INTERNATIONAL A LEVEL

Further Pure Maths 2

Review exercise 1

1 The inequality can be solved as follows:
$\frac{2}{x-2}<\frac{1}{x+1}$
$\frac{2}{x-2}-\frac{1}{x+1}<0$
$\frac{2 x+2-x+2}{(x-2)(x+1)}<0$
$\frac{x+4}{(x-2)(x+1)}<0$
The inequality is satisfied when numerator and denominator do not have the same sign. The numerator is positive for $x>-4$, while the denominator is positive for $x>2$ or $x<-1$
Therefore, the inequality holds for $x<-4$ or for $-1<x<2$

2

$$
\begin{aligned}
& \frac{x^{2}}{x-2}>2 x \\
& \frac{x^{2}}{x-2}-2 x>0 \\
& \frac{x^{2}-2 x(x-2)}{x-2}>0 \\
& \frac{4 x-x^{2}}{x-2}>0 \\
& \frac{x(4-x)}{x-2}>0 \\
& \text { Considering } \mathrm{f}(x)=\frac{x(4-x)}{x-2} \text {, } \\
& \text { You collect the terms together on } \\
& \text { one side of the inequality, write the } \\
& \text { expression as a single fraction and } \\
& \text { factorise the result as far as possible. } \\
& \text { You find the critical values by solving } \\
& \text { the numerator equal to zero and the } \\
& \text { denominator equal to zero. In this case } \\
& \text { the numerator }=0 \text {, gives } x=0,4 \text { and the } \\
& \text { denominator gives } x=2 \\
& \text { the critical values are } x=0,2 \text { and } 4 \\
& \text { The solution of } \frac{x^{2}}{x-2}>2 x \text { is } \\
& \{x: x<0\} \cup\{x: 2<x<4\} \\
& \begin{array}{l}
\text { For example if } 4<x \text {, then } \\
\frac{x(4-x)}{x-2}=\frac{\text { positive } \times \text { negative }}{\text { positive }}, \\
\text { which is negative. }
\end{array}
\end{aligned}
$$

$3 \quad \frac{x^{2}-12}{x}>1$
$\stackrel{x}{\text { Multiply both sides by } x^{2}}$

$$
\begin{aligned}
\frac{x^{2}-12}{\not x} \times x^{\not x} & >x^{2} \\
x\left(x^{2}-12\right)-x^{2} & >0 \\
x^{3}-12 x-x^{2} & >0 \\
x\left(x^{2}-x-12\right) & >0 \\
x(x-4)(x+3) & >0
\end{aligned}
$$

x cannot be zero as $\frac{x^{2}-12}{x}$ would be undefined, so x^{2} is positive and you can multiply both sides of an inequality by a positive number or expression without changing the inequality. You could not multiply both sides of the inequality by x as x could be positive or negative.

The solution of $\frac{x^{2}-12}{x}>1$ is $\{x:-3<x<0\} \cup\{x: x>4\}$

You can see from the sketch that the graph is above the x-axis for $-3<x<0$ and $x>4$
You can then just write down this answer.

If you preferred, you could solve this question using the method illustrated in the solutions to questions 2 and 3 above.

4

$$
\begin{aligned}
2 x^{2}-5 x-3 & =0 \\
(2 x+1)(x-3) & =0 \\
x & =-\frac{1}{2}, 3
\end{aligned}
$$

The solution to $2 x-5>\frac{3}{x}$ is $\left\{x:-\frac{1}{2}<x<0\right\} \cup\{x: x>3\}$
You need to find the x-coordinates of the points where the line and curve meet to find two end points of the intervals. The other end point $(x=0)$ can be seen by inspecting the sketch.

Further Pure Maths 2

5

$$
\begin{aligned}
& \frac{x+k}{x+4 k}>\frac{k}{x} \\
& \frac{x+k}{x+4 k}-\frac{k}{x}>0 \\
& \frac{(x+k) x-k(x+4 k)}{(x+4 k) x}>0 \\
& \frac{x^{2}-4 k^{2}}{(x+4 k) x}>0 \\
& \frac{(x+2 k)(x-2 k)}{(x+4 k) x}>0
\end{aligned}
$$

Considering $\mathrm{f}(x)=\frac{(x+2 k)(x-2 k)}{(x+4 k) x}$,
the critical values are $x=-4 k,-2 k, 0$ and $2 k$

The solution of $\frac{x+k}{x+4 k}>\frac{k}{x}$ is $\{x: x<-4 k\} \cup\{x:-2 k<x<0\} \cup\{x: x<0\}>2 k$
6 a

b The points of intersection are those whose x-coordinate satisfies the equation $2-x=-\frac{2}{x-1}$
We solve this:
$(2-x)(x-1)=-2$
$(x-2)(x-1)=2$
$x^{2}-3 x+2=2$
$x^{2}-3 x=0$
which is solved by $x=0$ and $x=3$
Both solutions are acceptable. Therefore, the points of intersection are $(0,2)$ and $(3,-1)$

INTERNATIONAL A LEVEL

c It is clear from the graph that the solution to the inequality is $x<0$ or $1<x<3$
7 a

b The points of intersection are those whose x-coordinate satisfies the equation $\frac{4 x}{2-x}=\frac{2 x}{(x+1)^{2}}$
We solve this:

$$
\begin{aligned}
& 4 x(x+1)^{2}=2 x(2-x) \\
& 4 x\left(x^{2}+2 x+1\right)=4 x-2 x^{2} \\
& 4 x^{3}+8 x^{2}+4 x=4 x-2 x^{2} \\
& 4 x^{3}+10 x^{2}=0 \\
& x^{2}(2 x+5)=0
\end{aligned}
$$

Which is solved by $x=0$ and $x=-\frac{5}{2}$
These are both acceptable solutions. Therefore, the points of intersection are $(0,0)$ and $\left(-\frac{5}{2},-\frac{20}{9}\right)$
c It is clear from the graph that the set of the solutions to the inequality is
$\left\{x: x \leqslant-\frac{5}{2}\right\} \cup\{x: x=0\} \cup\{x: x>2\}$
8 a

$y=\|x-5\|$

INTERNATIONAL A LEVEL

b The points of intersection are those whose x-coordinate satisfies the equation $|x-5|=|3 x-2|$ For $x>5$ or $x<\frac{2}{3}$, this is equivalent to $x-5=3 x-2$, which is solved by $x=-\frac{3}{2}$, which is acceptable. For $\frac{2}{3}<x<5$, it is equivalent to $5-x=3 x-2$, which is solved by $x=\frac{7}{4}$, which is also acceptable. Therefore, there are two points of intersection: $\left(-\frac{3}{2}, \frac{13}{2}\right)$ and $\left(\frac{7}{4}, \frac{13}{4}\right)$

8 c It is clear from the graph that the set of the solutions to the inequality is $\left\{x: x<-\frac{3}{2}\right\} \cup\left\{x: x>\frac{7}{4}\right\}$
9 a
Inequalities which contain both an expression in x with a
modulus sign and an expression in x without a modulus sign,
are usually best answered by drawing a sketch. In this case,
you have been instructed to draw the sketch first. The
continuous line is the graph of $y=|x+2|$
You should mark the coordinates of the points where the
graph cuts the axis.
You should now add the graph $y=2 x$ to your sketch.
This has been done with a dotted line. You find the
solution to the inequality by identifying the values of x
where the dotted line is above the continuous line.
b The intersection occurs when $x>-2$
When $-2,|x+2|=x+2$

The solution of $2 x>|x+2|$ is $x>2$

10 a

The dotted line is added to the sketch in part a to help you to solve part \mathbf{b}. The dotted line is the graph of $y=2 x+a$ and the solution to the Inequality in part \mathbf{b} is found by identifying where the continuous line, which corresponds to $|x-2 a|$, is above the dotted line, which corresponds to $2 x+a$
b The intersection occurs when $x<2 a$

When $x<2 a,\|x-2 a\|$	$=2 a-x$		
$2 a-x$	$=2 x+a$	\quad	If $\mathrm{f}(x)$ is negative, then
:---			
$\|\mathrm{f}(x)\|=-\mathrm{f}(x)$			

The solution of $|x-2 a|>2 x+a$ is $x<\frac{1}{3} a$

INTERNATIONAL A LEVEL

Further Pure Maths 2

11 We have two cases, depending on the sign of $\frac{x}{x-3}$
If $x>3$ or $x<0$, then it is positive and the inequality becomes $\frac{x}{x-3}<8-x$, which can be solved as follows:
$\frac{x}{x-3}+x-8<0$
$\frac{x+x^{2}-3 x-8 x+24}{x-3}<0$
$\frac{x^{2}-10 x+24}{x-3}<0$
$\frac{(x-6)(x-4)}{x-3}<0$
This holds when numerator and denominator do not have the same sign; the numerator is positive for $x>6$ or $x<4$, while the denominator is positive for $x>3$
Therefore, this inequality is solved for $x<3$ or for $4<x<6$; we were looking for solutions with $x>3$ or $x<0$, therefore the set satisfying the first case is $\{x: x<0\} \cup\{x: 4<x<6\}$
In the second case, we have $0<x<3$
Here, the inequality becomes $\frac{x}{3-x}<8-x$, which leads to $\frac{x^{2}-12 x+24}{x-3}<0$
This is solved by $x<6-2 \sqrt{3}$ or $x>3$
Clearly only the first one of these solutions is acceptable. Therefore, the set of the solutions is $\{x: 4<x<6\} \cup\{x: x<6-2 \sqrt{3}\}$

12 a

b There are two points of intersection.
At the right hand point of intersection,

$$
\begin{gathered}
x>\frac{1}{2} \Rightarrow|2 x-1|=2 x-1 \\
2 x-1=x \Rightarrow x=1
\end{gathered}
$$

At the left hand point of intersection, If $\mathrm{f}(x)>0$, then $|\mathrm{f}(x)|=\mathrm{f}(x)$
If $\mathrm{f}(x)<0$, then $|\mathrm{f}(x)|=-\mathrm{f}(x)$
$x<\frac{1}{2} \Rightarrow|2 x-1|=1-2 x$
$1-2 x=x \Rightarrow x=\frac{1}{3}$
The points of intersection of the two graphs are

$$
\left(\frac{1}{3}, \frac{1}{3}\right) \text { and }(1,1)
$$

You need to give both the x-coordinates and the y-coordinates.

INTERNATIONAL A LEVEL

c The solution of $|2 x-1|>x$ is $\left\{x: x<\frac{1}{3}\right\} \cup\{x: x>1\}$

13

$$
\begin{aligned}
|x-3| & >2|x+1| \\
(x-3)^{2} & >4(x+1)^{2} \\
x^{2}-6 x+9 & >4 x^{2}+8 x+4 \\
0 & >3 x^{2}+14 x-5 \\
(x+5)(3 x-1) & <0
\end{aligned}
$$

Considering $\mathrm{f}(x)=(x+5)(3 x-1)$, the critical values are $x=-5$ and $\frac{1}{3}$

As both $|x-3|$ and $2|x+1|$ are positive you can square both sides of the inequality without changing the direction of the inequality sign. If a and b are both positive, it is true that
$a>b \Rightarrow a^{2}>b^{2}$
You cannot make this step if either or both of a and b are negative.

	$x<-5$	$-5<x<\frac{1}{3}$	$\frac{1}{3}<x$
Sign of $\mathrm{f}(x)$	+	-	+

Alternatively you can draw a sketch of $y=(x+5)(3 x-1)$ and identify the region where the curve is below
The solution of $|x-3|>2|x+1|$ is the y-axis.

$$
\left\{x:-5<x<\frac{1}{3}\right\}
$$

14

$\|5 x+a\| \leqslant\|2 x\|$	As a is positive, both $\|5 x+a\|$ and $\|2 x\|$ are positive and you can square both sides of the inequality.
$(5 x+a)^{2} \leqslant(2 x)^{2}$	
$25 x^{2}+10 a x+a^{2} \leqslant 4 x^{2}$	
$21 x^{2}+10 a x+a^{2} \leqslant 0$	
$(3 x+a)(7 x+a) \leqslant 0$	
Sketching $y=(3 x+a)(7 x+a)$	The graph is a parabola intersecting the x-axis at $x=-\frac{1}{3} a$ and $x=-\frac{1}{7} a$

The solution of $|5 x+a| \leqslant|2 x|$ is $-\frac{1}{3} a \leqslant x \leqslant-\frac{1}{7} a$

15 a

The curve meets the x-axis at $(2,0)$ and $(4,0)$
The line meets the x-axis at $(3,0)$
$15 \mathbf{b}$ To find the coordinates of A. The x-coordinate of A is in the interval $2<x<4$
In this interval $x^{2}-6 x+8$ is negative and, hence,

$$
\begin{array}{rlrl}
\left|x^{2}-6 x+8\right| & =-x^{2}+6 x-8 & \begin{array}{l}
\text { If } \mathrm{f}(x)<0, \text { then } \\
|\mathrm{f}(x)|=-\mathrm{f}(x)
\end{array} \\
-x^{2}+6 x-8 & =\frac{3 x-9}{2} & & \\
-2 x^{2}+12 x-16 & =3 x-9 & & \\
2 x^{2}-9 x+7 & =0 & & \begin{array}{l}
\text { As the } x \text {-coordinate of } A \text { is in the } \\
\text { interval } 2<x<4, \text { the solutions } \\
x=1 \text { must be rejected. }
\end{array} \\
(2 x-7)(x-1) & =0 & & \\
x & =\frac{7}{2}, \chi \\
y & =\frac{3 \times \frac{7}{2}-9}{2}=\frac{3}{4} & &
\end{array}
$$

The coordinates of A are $\left(\frac{7}{2}, \frac{3}{4}\right)$,
To find the coordinates of B. The x-coordinate of B is in the interval $x>4$
In this interval $x^{2}-6 x+8$ is positive and, hence,

$$
\begin{array}{rlrl}
\left|x^{2}-6 x+8\right| & =x^{2}-6 x-8 & & \text { If } \mathrm{f}(x)>0, \text { then }|\mathrm{f}(x)|=\mathrm{f}(x) \\
x^{2}+6 x+8 & =\frac{3 x-9}{2} \\
2 x^{2}-12 x+16 & =3 x-9 & \\
2 x^{2}-15 x+25 & =0 & \\
(x-5)(2 x-5) & =0 & & \begin{array}{l}
\text { As the } x \text {-coordinate of } B \text { is in the } \\
\text { interval } x>4, \text { the solution } \\
x=2 \frac{1}{2} \text { must be rejected. }
\end{array} \\
x & =5, \frac{5 / 2}{2}=3 & & =\frac{3 \times 5-9}{2}=3
\end{array}
$$

The coordinates of B are $(5,3)$
The solution of $2\left|x^{2}-6 x+8\right|>3 x-9$ is $x<\frac{7}{2}, x>5$

You solve the inequality by inspecting the graphs. You look for the values of x where the curve is above the line.

INTERNATIONAL A LEVEL

16 a
 of the points where the graphs meet the axes.

16 b Let the points where the graphs intersect be A and B

For $A,(x-2)(x-4)$ is positive

$$
\begin{gathered}
\qquad(x-2)(x-4)=6-2 x \\
x^{2}-6 x+8=6-2 x \\
x^{2}-4 x=-2 \\
x^{2}-4 x+4=2 \\
(x-2)^{2}=2 \\
x=2-\sqrt{2} \\
\text { For } B,(x-2)(x-4) \text { is negative } \\
-(x-2)(x-4)=6-2 x
\end{gathered}
$$

$$
\begin{aligned}
-(x-2)(x-4) & =6-2 x \\
-x^{2}+6 x-8 & =6-2 x \\
x^{2}-8 x & =-14 \\
x^{2}-8 x+16 & =2 \\
(x-4)^{2} & =2 \\
x & =4-\sqrt{2}
\end{aligned}
$$

$$
(x-4)^{2}=2 \quad \text { The quadratic equation has another }
$$ solution $2+\sqrt{2}$ but the diagram shows

The values of x for which $|(x-2)(x-4)|=6-2 x$ that the x-coordinate of B is less than 4 , are $2-\sqrt{2}$ and $4-\sqrt{2}$
c The solution of $|(x-2)(x-4)|<6-2 x$

You look for the values of x where the curve is below the line.

17 a For $x>-2, x+2$ is positive and the equation is

$$
\begin{aligned}
\frac{x^{2}-1}{x+2} & =3(1-x) \\
x^{2}-1 & =3(1-x)(x+2)=-3 x^{2}-3 x+6 \\
4 x^{2}+3 x-7 & =(4 x+7)(x-1)=0 \\
x & =-\frac{7}{4}, 1
\end{aligned}
$$

For $x<-2, x+2$ is negative and the equation is

As both of these answers are greater than -2 both are valid.

$$
\begin{aligned}
\frac{x^{2}-1}{-(x+2)} & =3(1-x) \\
x^{2}-1 & =-3(1-x)(x+2)=3 x^{2}+3 x-6 \\
2 x^{2}+3 x-5 & =(2 x+5)(x-1)=0 \\
x & =-\frac{5}{2},
\end{aligned}
$$

The solutions are $-\frac{5}{2},-\frac{7}{4}$ and 1

As 1 is not less than -2 the answer 1 should be 'rejected' here. However, the earlier working has already shown 1 to be a correct solution.

17 b

To complete the question, you add the graph of $\mathrm{y}=3(1-x)$ to the graph which has already been drawn for you. You know the x -coordinates of the points of intersection from part a.

The solution of $\frac{x^{2}-1}{|x+2|}<3(1-x)$ is
You look for the values of x on the graph $\left\{x: x<-\frac{5}{2}\right\} \cup\left\{x:-\frac{7}{4}<x<1\right\}$ where the curve is below the line.

$$
18 \frac{2}{(r+1)(r+2)}=\frac{A}{r+1}+\frac{B}{r+2}, \begin{aligned}
& 2=A(r+2)+B(r+1) \\
& 2=A=-B
\end{aligned}
$$

Let $\mathrm{f}(r)=\frac{1}{r+1}$

$$
\begin{aligned}
\sum_{r=1}^{n} \frac{2}{(r+1)(r+2)} & =2 \sum_{r=1}^{n}\left(\frac{1}{r+1}-\frac{1}{r+2}\right) \\
& =2(f(1)-f(n+1)) \\
& =2\left(\frac{1}{2}-\frac{1}{n+2}\right) \\
& =1-\frac{2}{n+2}=\frac{n}{n+2}
\end{aligned}
$$

INTERNATIONAL A LEVEL

$19 \frac{2}{(r+1)(r+3)}=\frac{A}{r+1}+\frac{B}{r+3}$
$2=A(r+3)+B(r+1)$
$2=2 A=-2 B$
Let $\mathrm{f}(r)=\frac{1}{r+1}$

$$
\begin{aligned}
\sum_{r=1}^{n} \frac{2}{(r+1)(r+3)} & =\sum_{r=1}^{n}\left(\frac{1}{r+1}-\frac{1}{r+3}\right) \\
& =\mathrm{f}(1)+\mathrm{f}(2)-\mathrm{f}(n+1)-\mathrm{f}(n+2) \\
& =\frac{1}{2}+\frac{1}{3}-\frac{1}{n+2}-\frac{1}{n+3} \\
& =\frac{5(n+2)(n+3)-6(n+3)-6(n+2)}{6(n+2)(n+3)} \\
& =\frac{n(5 n+13)}{6(n+2)(n+3)}
\end{aligned}
$$

Hence $a=5, b=13$ and $c=6$
20 a

b $\sum_{r=1}^{n} \frac{1}{(r+1)(r+2)}=\sum_{r=1}^{n}\left(\frac{r+1}{r+2}-\frac{r}{r+1}\right)$

$$
\begin{aligned}
&= \frac{2}{3}\left(-\frac{1}{2}\right. \\
&+\frac{3 / 4}{4}-\frac{2}{3} \\
&+\frac{4}{5}-\frac{3 / 4}{4} \\
& \vdots \\
&+\frac{n /}{n+1}-\frac{n-1}{n} \\
&+\frac{n+1}{n+2}-\frac{n / 2}{n+1} \\
&= \frac{n+1}{n+2}-\frac{1}{2} \\
&= \frac{2(n+1)-(n+2)}{2(n+2)}=\frac{2 n+2-n-2}{2(n+2)} \\
&= \frac{n}{2(n+2)}
\end{aligned}
$$

$$
+\frac{n /}{n+1}-\frac{n-1}{n}+\begin{gathered}
\text { This is the LHS of the identity with } r=n-1 . \\
\frac{r+1}{n+2}-\frac{r}{r+1}=\frac{n-1+1}{n-1+2}-\frac{n-1}{n-1+1} \\
=\frac{n}{n+1}-\frac{n-1}{n}
\end{gathered}
$$

$$
=\frac{n+1}{n+2}-\frac{1}{2}
$$

The only terms which have not cancelled one another out are the $-\frac{1}{2}$ in the first line of the summation and the $\frac{n+1}{n+2}$ in the last line.

INTERNATIONAL A LEVEL

21 a Let $\frac{2}{(x+1)(x+2)(x+3)}=\frac{A}{x+1}+\frac{B}{x+2}+\frac{C}{x+3}$
Multiplying throughout by $(x+1)(x+2)(x+3)$
$2=A(x+2)(x+3)+B(x+1)(x+3)+C(x+1)(x+2)$
Substitute $x=-1$
$2=A \times 1 \times 2 \Rightarrow A=1$
When -1 is substituted for x then both $B(x+1)(x+3)$ and $C(x+1)(x+2)$ become
Substitute $x=-2$
$2=B \times-1 \times 1 \Rightarrow B=-2$
Substitute $x=-3$
$2=C \times-2 \times-1 \Rightarrow C=1$
Hence
$\mathrm{f}(x)=\frac{1}{x+1}-\frac{2}{x+2}+\frac{1}{x+3}$
b Using the result in part a with $x=r$ each term in the summation into three parts.

$$
\sum_{r=1}^{n} \mathrm{f}(r)=\frac{1}{r+1}-\frac{2}{r+2}+\frac{1}{r+3}
$$

$$
=\frac{1}{2}-\frac{2}{3}+\frac{1 / 4}{4}
$$

$$
+\frac{1}{3}-\frac{2}{4}+\frac{2}{5}
$$

$$
+\frac{1}{4}-\frac{2}{5}+\frac{1 /}{6}
$$

$$
+\frac{1}{n-1}-\frac{2}{n}+\frac{1}{n+1}
$$

$$
+\frac{1}{n}-\frac{2 /}{n+1}+\frac{1}{n+2}
$$

$$
+\frac{1}{n+1}-\frac{2}{n+2}+\frac{1}{n+3}
$$

$$
=\frac{1}{2}-\frac{2}{3}+\frac{1}{3}+\frac{1}{n+2}-\frac{2}{n+2}+\frac{1}{n+3}
$$

$$
=\frac{1}{6}-\frac{1}{n+2}+\frac{1}{n+3} \quad \begin{aligned}
& \begin{array}{l}
\text { This question asks for no particular form of } \\
\text { the answer. You should collect together like } \\
\text { terms but, otherwise, the expression can be } \\
\text { left as it is. You do ont have to express your } \\
\text { answer as a single fraction unless the question } \\
\text { asks you to do this. }
\end{array}
\end{aligned}
$$

INTERNATIONAL A LEVEL

$22 \mathbf{a} \frac{1}{(r-1)^{2}}-\frac{1}{r^{2}}=\frac{r^{2}-(r-1)^{2}}{r^{2}(r-1)^{2}}$

Methods for simplifying algebraic fractions can be found in Chapter 1 of book C3.

$$
\begin{aligned}
& =\frac{r^{2}-\left(r^{2}-2 r+1\right)}{r^{2}(r-1)^{2}} \\
& =\frac{2 r-1}{r^{2}(r-1)^{2}}
\end{aligned}
$$

In this summation all of the terms cancel out with one another except for one term at the beginning and one term at the end.

23 a
$\frac{4}{r(r+2)}=\frac{A}{r}+\frac{B}{r+2}$
$4=A(r+2)+B r$
$4=2 A=-2 B$
Let $\mathrm{f}(r)=\frac{1}{r}$

$$
\begin{aligned}
\sum_{r=1}^{n} \frac{4}{r(r+2)} & =2 \sum_{r=1}^{n}\left(\frac{1}{r}-\frac{1}{r+2}\right) \\
& =2(\mathrm{f}(1)+\mathrm{f}(2)-\mathrm{f}(n+1)-\mathrm{f}(n+2)) \\
& =2\left(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}\right) \\
& =\frac{3(n+1)(n+2)-2(n+2)-2(n+1)}{(n+1)(n+2)} \\
& =\frac{n(3 n+5)}{(n+1)(n+2)}
\end{aligned}
$$

Hence $a=3$ and $b=5$

$$
23 \mathbf{b} \begin{aligned}
\sum_{r=50}^{100} \frac{4}{\mathrm{r}(r+2)} & =\sum_{r=1}^{100} \frac{4}{\mathrm{r}(r+2)}-\sum_{r=1}^{49} \frac{4}{\mathrm{r}(r+2)} \\
& =\frac{100 \times 305}{101 \times 102}-\frac{49 \times 152}{50 \times 51} \\
& =2.960590 \ldots-2.920784 \\
& =0.0398(4 \mathrm{~d} . \mathrm{p} .)
\end{aligned}
$$

$\sum_{r=50}^{100} \mathrm{f}(r)=\sum_{r=1}^{100} \mathrm{f}(r)-\sum_{r=1}^{49} \mathrm{f}(r)$
You find the sum from the 50th to the 100th term by subtracting the sum from the first to the 49th term from the sum from the first to the 100th term.
It is a common error to subtract one term too many, in this case the 50th term. The sum you are finding starts with the 50th term. You must not subtract it from the series - you have to leave it in the series.
24 a $\quad 4 r^{2}-1=(2 r-1)(2 r+1)$
Let

$$
\frac{2}{4 r^{2}-1}=\frac{2}{(2 r-1)(2 r+1)}=\frac{A}{2 r-1}+\frac{B}{2 r+1}
$$

Multiply throughout by $(2 r-1)(2 r+1)$

$$
2=A(2 r+1)+B(2 r-1)
$$

Substitute $r=\frac{1}{2}$

$$
2=2 A \Rightarrow A=1
$$

Substitute $r=-\frac{1}{2}$

$$
2=-2 B \Rightarrow B=-1
$$

Hence

$$
\begin{aligned}
& \frac{2}{4 r^{2}-1}=\frac{1}{2 r-1}-\frac{1}{2 r+1} \\
& \begin{aligned}
\sum_{r=1}^{n} \frac{2}{4 r^{2}-1} & =\sum_{r=1}^{n}\left(\frac{1}{2 r-1}-\frac{1}{2 r+1}\right) \longleftarrow \\
& =\frac{1}{2}-\frac{1}{2 r-1}-\frac{1}{2 r+1}=\frac{1}{2 \times 1-1}-\frac{1}{2 \times 1+1}=\frac{1}{1}-\frac{1}{3}
\end{aligned} \\
& =\frac{1}{1}-\frac{1}{3} \longleftarrow \begin{array}{ll}
2 r-1 \quad 2 r+1 \\
1 / & \text { With } r=n-1,
\end{array} \\
& \begin{array}{l}
\frac{1}{2 r-1}-\frac{1}{2 r+1}=\frac{1}{2 \times(n-1)-1}-\frac{1}{2 \times(n-1)} \\
=\frac{1}{2 n-2-1}-\frac{1}{2 n-2+1}=\frac{1}{2 n-3}-\frac{1}{2 n-1}
\end{array} \\
& \begin{array}{c}
\frac{1}{5}-\frac{1}{7} \\
\vdots \\
1
\end{array} \\
& +\frac{1}{2 n-3}-\frac{1}{2 n-1} \\
& +\frac{1 /}{2 n-1}-\frac{1}{2 n+1} \\
& =1-\frac{1}{2 n+1} \stackrel{\text { as required }}{ } \\
& +\frac{1}{3}-\frac{1}{5} \\
& \text { The only terms which are not cancelled out in the } \\
& \text { summation are the } \frac{1}{1} \text { at the beginning and the } \\
& -\frac{1}{2 n+1} \text { at the end. }
\end{aligned}
$$

This question gives you the option to choose your own method (the question has 'or otherwise') and, as you are given the answer, you could, if you preferred, use the method of mathematical induction.
If the method of differences is used, you begin by factorising $4 r^{2}-1$, using the difference of two squares, and then express $\frac{2}{(2 r-1)(2 r+1)}$ in partial fractions.
$24 \mathbf{b} \sum_{r=11}^{n} \frac{2}{4 r^{2}-1}=\sum_{r=1}^{20} \frac{2}{4 r^{2}-1}-\sum_{r=1}^{10} \frac{2}{4 r^{2}-1}$
You find the sum from the 11th to the 20th
term by subtracting the sum from the first to

$$
=\left(1-\frac{1}{41}-1+\frac{1}{21}\right)
$$

$=-\frac{1}{41}+\frac{1}{21}=\frac{-21+41}{41 \times 21} \longleftarrow \begin{aligned} & \text { The conditions of the question require an exact }\end{aligned}$
$41 \quad 21 \quad 41 \times 21$

$$
=\frac{20}{861}
$$

25 a Using the binomial expansion

$$
\begin{align*}
& (2 r+1)^{3}=8 r^{3}+12 r^{2}+6 r+1 \tag{1}\\
& \left(\begin{array}{ll}
\text { (1) }
\end{array}\right. \\
& (2 r-1)^{3}=8 r^{3}-12 r^{2}+6 r-1 \\
& \text { Subtracting the two expansions gives an } \\
& \text { expression in } r^{2} \text {. This enables you to sum } r^{2} \\
& \text { using the method of differences. }
\end{align*}
$$

b Using identity (3) in part a

$$
\begin{aligned}
& \sum_{r=1}^{n}\left(24 r^{2}+2\right)=\sum_{r=1}^{n}\left((2 r+1)^{3}-(2 r-1)^{3}\right) \\
& \begin{array}{l|l|}
24 \sum_{r=1}^{n} r^{2}+\sum_{r=1}^{n} 2=\sum_{r=1}^{n}\left((2 r+1)^{3}-(2 r-1)^{3}\right) & \sum_{r=1}^{n} 2=\underbrace{2+2+2+\ldots+2}_{n \text { times }}=2 n \\
24 \sum_{r=1}^{n} r^{2}+2 n=3^{\gamma}-1^{3} & \text { It is a common error to write } \sum_{r=1}^{n} 2=2 . \\
\end{array} \\
& +53^{3}+33^{2} \\
& \begin{array}{c|}
+\not 7^{2}-5^{3} \\
\vdots
\end{array} \quad \text { The expression is }(2 r+1)^{3}-(2 r-1)^{3} \text { with } n \\
& +(2 n-1)^{3}-(2 n-3)^{3} \square \\
& +(2 n+1)^{3}-(2 n-1)^{3} \\
& 24 \sum_{r=1}^{n} r^{2}+2 n=(2 n+1)^{3}-1 \longleftarrow \text { Summing gives you an equation in } \sum r^{2}, \\
& 24 \sum_{r=1}^{n} r^{2}=8 n^{2}+12 n^{2}+6 n+1-1-2 n \\
& =8 n^{3}+12 n^{2}+4 n=4 n\left(2 n^{2}+3 n+1\right) \\
& =4 n(n+1)(2 n+1) \\
& \sum_{r=1}^{n} r^{2}=\frac{4 n(n+1)(2 n+1)}{24}=\frac{1}{6} n(n+1)(2 n+1) \text {, as required. }
\end{aligned}
$$

25c $(3 r-1)^{2}=9 r^{2}-6 r+1$
Hence
$\sum_{r=1}^{40}(3 r-1)^{2}=9 \sum_{r=1}^{40} r^{2}-6 \sum_{r=1}^{40} r+\sum_{r=1}^{40} 1$

In the formula proved in part \mathbf{b}, you replace the n by 40 .

Using the result in part \mathbf{b}.

$$
9 \sum_{r=1}^{40} r^{2}=9 \times \frac{1}{6} \times 40 \times 41 \times 81=199260
$$

Using the standard result $\sum_{r=1}^{n} r=\frac{n(n+1)}{2}$,
$6 \sum_{r=1}^{40} r=6 \times \frac{40 \times 41}{2}=4920$

$$
\sum_{r=1}^{40} 1=40
$$

$$
\begin{aligned}
& \sum_{r=1}^{40} 1=40 \text { is } 40 \text { ones added together which is, } \\
& \text { of course, } 40 .
\end{aligned}
$$

Combining these results

$$
\sum_{r=1}^{40}(3 r-1)^{2}=199260-4920+40=194380
$$

$26 \frac{1}{r(r+1)(r+2)}=\frac{A}{r}+\frac{B}{r+1}+\frac{C}{r+2}$
$1=A(r+1)(r+2)+B r(r+2)+C r(r+1)$
$r=0: 1=2 A$
$r=1: 1=-B$
$r=2: 1=2 C$
Let $\mathrm{f}(r)=\frac{1}{r}$

$$
\begin{aligned}
\sum_{r=1}^{2 n} \frac{1}{r(r+1)(r+2)} & =\frac{1}{2} \sum_{r=1}^{2 n}\left(\frac{1}{r}-\frac{1}{r+1}+\frac{1}{r+2}-\frac{1}{r+1}\right) \\
& =\frac{1}{2}(f(1)-f(2 n+1)+f(2 n+2)-f(2)) \\
& =\frac{1}{2}\left(1-\frac{1}{2}-\frac{1}{2 n+1}+\frac{1}{2 n+2}\right) \\
& =\frac{1}{4}\left(1-\frac{2}{2 n+1}+\frac{1}{n+1}\right) \\
& =\frac{1}{4}\left(\frac{(n+1)(2 n+1)-2(n+1)+(2 n+1)}{(n+1)(2 n+1)}\right) \\
& =\frac{1}{4} \frac{2 n^{2}+3 n}{(n+1)(2 n+1)}=\frac{n(2 n+3)}{4(n+1)(2 n+1)}
\end{aligned}
$$

Hence $a=2, b=3$ and $c=4$

INTERNATIONAL A LEVEL

27 a RHS $=r-1+\frac{1}{r}-\frac{1}{r+1}$

$$
\begin{aligned}
& =\frac{(r-1) r(r+1)+(r+1)-r}{r(r+1)} \\
& =\frac{r\left(r^{2}-1\right)+1}{r(r+1)} \\
& =\frac{r^{3}-r+1}{r(r+1)}=\text { LHS, as required }
\end{aligned}
$$

b Using the result in part a

$$
\begin{aligned}
& \sum_{r=1}^{n} \frac{r^{3}-r+1}{r(r+1)}=\sum_{r=1}^{n} r-\sum_{r=1}^{\downarrow} 1+\sum_{r=1}^{n}\left(\frac{1}{r}-\frac{1}{r+1}\right) \\
& \sum_{r=1}^{n} r=\frac{n(n+1)}{2} \\
& \sum_{r=1}^{n} 1=n \\
& \sum_{r=1}^{n}\left(\frac{1}{r}-\frac{1}{r+1}\right)= \frac{1}{1}-\frac{1 / 2}{2} \\
&+\frac{1}{2}-\frac{1}{3} \\
&+\frac{1}{3}-\frac{1}{4} \\
&+\frac{1}{n-1}+\frac{1}{n} \\
&+\frac{1}{n}-\frac{1}{n+1} \\
&= 1+\frac{1}{n+1}
\end{aligned}
$$

Combining the three summations

$$
\begin{aligned}
\sum_{r=1}^{n} \frac{r^{3}-r+1}{r(r+1)} & =\frac{n(n+1)}{2}-n+1-\frac{1}{n+1} \\
& =\frac{n(n+1)^{2}-2 n(n+1)+2(n+1)-2}{2(n+1)} \\
& =\frac{n^{3}+2 n^{2}+n-2 n^{2}-2 n+2 n+2-2}{2(n+1)} \\
& =\frac{n^{3}+n}{2(n+1)}=\frac{n\left(n^{2}+1\right)}{2(n+1)}
\end{aligned}
$$

Further Pure Maths 2

$28 \frac{2 r+3}{r(r+1)}=\frac{A}{r}+\frac{B}{r+1}$
$2 r+3=A(r+1)+B r$
$3=A, 1=-B$
$\frac{2 r+3}{r(r+1)} \frac{1}{3^{r}}=\frac{1}{3^{r}}\left(\frac{3}{r}-\frac{1}{r+1}\right)$
$=\frac{1}{3^{r-1}} \frac{1}{r}-\frac{1}{3^{r}} \frac{1}{r+1}$
Let $\mathrm{f}(r)=\frac{1}{3^{r-1}} \frac{1}{r}$

$$
\begin{aligned}
\sum_{r=1}^{n} \frac{2 r+3}{r(r+1)} \frac{1}{3^{r}} & =\sum_{r=1}^{n}(\mathrm{f}(r)-\mathrm{f}(r+1)) \\
& =(\mathrm{f}(1)-\mathrm{f}(n+1)) \\
& =1-\frac{1}{3^{n}(n+1)}
\end{aligned}
$$

29 Using Euler's solution $\mathrm{e}^{\mathrm{i} \theta}=\cos \theta+\mathrm{i} \sin \theta$,

$$
\begin{aligned}
& \cos 2 x+\mathrm{i} \sin 2 x=\mathrm{e}^{\mathrm{i} 2 x} \\
& \cos 9 x-\mathrm{i} \sin 9 x=\cos (-9 x)+\mathrm{i} \sin (-9 x)=\mathrm{e}^{\mathrm{i}(-9 x)}
\end{aligned}
$$

Hence

For any angle, $\theta, \cos \theta=\cos (-\theta)$ and

$$
-\sin \theta=\sin (-\theta)
$$

You will find these relations useful
when finding the arguments of

$$
\begin{aligned}
& \begin{aligned}
& \frac{\cos 2 x+\mathrm{i} \sin 2 x}{\cos 9 x-\mathrm{i} \sin 9 x}=\frac{\mathrm{e}^{\mathrm{i} 2 x}}{\mathrm{e}^{\mathrm{i}(-9 x)}}=\mathrm{e}^{\mathrm{i}(2 x+9 x)}=\mathrm{e}^{\mathrm{i} 11 x} \\
&=\cos 11 x+\mathrm{i} \sin 11 x \\
& \text { This is the required form with } n=11 .
\end{aligned} \begin{array}{l}
\text { Manipulating the arguments in } \\
\mathrm{e}^{\mathrm{i} \theta} \text { you use the ordinary laws of } \\
\text { indices. }
\end{array} \\
& \hline
\end{aligned}
$$

30 a By de Moivre's theorem

$$
\begin{aligned}
\cos 5 \theta & +\mathrm{i} \sin 5 \theta=(\cos \theta+\mathrm{i} \sin \theta)^{5}=(c+\mathrm{i} s)^{5}, \text { say } \\
& =c^{5}+5 c^{4} \mathrm{i} s+10 c^{3} \mathrm{i}^{2} s^{2}+10 c^{2} \mathrm{i}^{3} s^{3}+5 c \mathrm{i}^{4} s^{4}+\mathrm{i}^{5} s^{5} \\
& =c^{5}+\mathrm{i} 5 c^{4} s-10 c^{3} s^{3}-\mathrm{i} 10 c^{2} s^{3}+5 c s^{4}-\mathrm{i} s^{5}
\end{aligned}
$$

It is sensible to abbreviate $\cos \theta$ and $\sin \theta$ as c and s respectively when you have as many powers of $\cos \theta$ and $\sin \theta$ to write out as vou have

Equating real parts

$$
\cos 5 \theta=c^{5}-10 c^{3} s^{2}+5 c s^{4}
$$

Using $\cos ^{2} \theta+\sin ^{2} \theta=1$

$$
\begin{aligned}
\cos 5 \theta & =c^{5}-10 c^{3}\left(1-c^{2}\right)+5 c\left(1-c^{2}\right)^{2} \\
& =c^{5}-10 c^{3}+10 c^{5}+5 c-10 c^{3}+5 c^{5} \\
& =16 c^{5}-20 c^{3}+5 c \\
& =16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta, \text { as required }
\end{aligned}
$$

30 b Substitute $x=\cos \theta$ into $16 x^{5}-20 x^{3}+5 x+1=0$

$$
\begin{aligned}
16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta+1 & =0 \\
16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta & =-1
\end{aligned}
$$

Using the result of part a

$$
\begin{aligned}
\cos 5 \theta & =-1 \\
5 \theta & =\pi, 3 \pi, 5 \pi \\
\theta & =\frac{\pi}{5}, \frac{3 \pi}{5}, \frac{5 \pi}{5} \\
x=\cos \theta & =\cos \frac{\pi}{5}, \cos \frac{3 \pi}{5}, \cos \pi \\
& =0.809,-0.309,-1
\end{aligned}
$$

Additional solutions are found by increasing the angles in steps of 2π. You are asked for 3 answers, so you need 3 angles at this stage.

31 a By de Moivre's theorem

$$
\begin{aligned}
\cos 5 \theta+\mathrm{i} \sin 5 \theta & =(\cos \theta+\mathrm{i} \sin \theta)^{5}=(c+\mathrm{i} s)^{5}, \text { say } \\
& =c^{5}+5 c^{4} \mathrm{i} s+10 c^{3} \mathrm{i}^{2} s^{2}+10 c^{2} \mathrm{i}^{2} s^{3}+5 c \mathrm{i}^{3} s^{4}+\mathrm{i}^{5} s^{5} \\
& =c^{5}+\mathrm{i} 5 c^{4} s-10 c^{3} s^{2}-\mathrm{i} 10 c^{2} s^{3}+5 c s^{4}-\mathrm{i} s^{5}
\end{aligned}
$$

Equating imaginary parts

$$
\begin{aligned}
\sin 5 \theta & =5 c^{4} s-10 c^{2} s^{3}+s^{5} \\
& =s\left(5 c^{4}-10 c^{2} s^{2}+s^{4}\right) \\
& =s\left(5 c^{4}-10 c^{2}\left(1-c^{2}\right)+\left(1-c^{2}\right)^{2}\right) \\
& =s\left(5 c^{4}-10 c^{2}+10 c^{4}+1-2 c^{2}+c^{4}\right) \\
& =s\left(16 c^{4}-12 c^{2}+1\right) \\
& =\sin \theta\left(16 \cos ^{4} \theta-12 \cos ^{2} \theta+1\right), \text { as required }
\end{aligned}
$$

Repeatedly using the identity $\cos ^{2} \theta+\sin ^{2} \theta=1$, which in this context is $s^{2}=1-c^{2}$.

Further Pure Maths 2

$\begin{aligned} \sin 5 \theta+\cos \theta \sin 2 \theta & =0 \\ \sin \theta\left(16 \cos ^{4} \theta-12 \cos ^{2} \theta+1\right)+2 \sin \theta \cos ^{2} \theta & =0 \\ \sin \theta\left(16 \cos ^{4} \theta-10 \cos ^{2} \theta+1\right) & =0 \end{aligned}$	Using the identity proved in part \mathbf{a} and the identity $\sin 2 \theta=2 \sin \theta \cos \theta$.
$\sin \theta\left(2 \cos ^{2} \theta-1\right)\left(8 \cos ^{2} \theta-1\right)=0$	
$\text { Hence } \begin{aligned} & \sin \theta=0, \cos ^{2} \theta=\frac{1}{2}, \cos ^{2} \theta=\frac{1}{8} \\ & \sin \theta=0 \Rightarrow \theta=0 \end{aligned}$	
$\begin{aligned} \cos ^{2} \theta & =\frac{1}{2} \Rightarrow \cos \theta= \pm \frac{1}{\sqrt{2}} \\ \cos \theta & =\frac{1}{\sqrt{2}} \Rightarrow \theta=\frac{\pi}{4} \end{aligned}$	You must consider the negative as well as the positive square roots.
$\cos \theta=-\frac{1}{\sqrt{2}} \Rightarrow \theta=\frac{3 \pi}{4}$	
$\cos ^{2} \theta=\frac{1}{8} \Rightarrow \cos \theta= \pm \frac{1}{2 \sqrt{2}}$	
$\cos \theta=\frac{1}{2 \sqrt{2}} \Rightarrow \theta=1.209 \text { (3 d.p.) }$	
$\cos \theta=-\frac{1}{2 \sqrt{2}} \Rightarrow \theta=1.932 \text { (3 d.p.) }$	The question has specified no accuracy and any sensible accuracy would be accepted for the approximate answers.

The solutions of the equation are
$0, \frac{\pi}{4}, \frac{3 \pi}{4}, 1.209$ (3 d.p.) and 1.932 (3 d.p.).

Further Pure Maths 2

32 a $\sin \theta=\frac{\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}}{2 \mathrm{i}}$

33 a $z=\cos \theta+\mathrm{i} \sin \theta$
Using de Moivre's theorem

$$
\begin{equation*}
z^{n}=(\cos \theta+\mathrm{i} \sin \theta)^{n}=\cos n \theta+\mathrm{i} \sin n \theta \tag{1}
\end{equation*}
$$

From (1)

$$
\begin{array}{rlr}
z^{-n}=\frac{1}{z^{n}} & =\frac{1}{\cos n \theta+\mathrm{i} \sin n \theta} & \\
& =\frac{1}{\cos n \theta+\mathrm{i} \sin n \theta} \times \frac{\cos n \theta-\mathrm{i} \sin n \theta}{\cos n \theta-\mathrm{i} \sin n \theta} \\
& =\frac{\cos n \theta-\mathrm{i} \sin n \theta}{\cos ^{2} n \theta+\sin ^{2} n \theta}=\cos n \theta-\mathrm{i} \sin n \theta & \text { (2) } \tag{2}\\
\begin{array}{l}
\text { Multiply the numerator and } \\
\text { denominator by } \\
\cos n \theta-\mathrm{i} \sin n \theta, \text { the conjugate } \\
\text { complex number of } \\
\cos n \theta+\mathrm{i} \sin n \theta .
\end{array} \\
z^{n}+z^{-n} & =\cos n \theta+\mathrm{i} \sin n \theta+\cos n \theta-\mathrm{i} \sin n \theta \\
& =2 \cos n \theta, \text { as required. } & \text { Use } \cos ^{2} n \theta+\sin ^{2} n \theta=1 .
\end{array}
$$

$33 \mathbf{b} \quad \cos \theta=\frac{\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{\mathrm{i} \theta}}{2}=\frac{z+z^{-1}}{2}$

$$
\begin{aligned}
\cos ^{6} \theta & =\left(\frac{z+z^{-1}}{2}\right)^{6} \\
& =\frac{1}{64}\left(z^{6}+6 z^{5} z^{-1}+15 z^{4} z^{-2}+20 z^{3} z^{-3}+15 z^{2} z^{-4}+6 z^{1} z^{-5}+z^{-6}\right) \\
& =\frac{1}{64}\left(z^{6}+6 z^{4}+15 z^{2}+20+15 z^{-2}+6 z^{-4}+z^{-6}\right) \\
& =\frac{1}{32}\left(\frac{z^{6}+z^{-6}}{2}+\frac{6\left(z^{4}+z^{-4}\right)}{2}+\frac{15\left(z^{2}+z^{-2}\right)}{2}+\frac{20}{2}\right) \\
& =\frac{1}{32}(\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10)
\end{aligned}
$$

You use
$\frac{z^{n}+z^{-n}}{2}=\cos n \theta$ with
$n=6,4$ and 2.
c $\int_{0}^{\frac{\pi}{2}} \cos ^{6} \theta \mathrm{~d} \theta=\frac{1}{32} \int_{0}^{\frac{\pi}{2}}(\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10) \mathrm{d} \theta$
$=\frac{1}{32}-\left[\frac{1}{6} \sin 6 \theta+\frac{6}{4} \sin 4 \theta+\frac{15}{2} \sin 2 \theta+10 \theta\right]_{0}^{\frac{\pi}{2}}$
$=\frac{1}{32} \times 10 \times \frac{\pi}{2}=\frac{5 \pi}{32}$, as required

With the exception of 10θ all of these terms have value 0 at both the upper and the lower limit.

34 a Let $4+4 \mathrm{i}=r(\cos \theta+\mathrm{i} \sin \theta)=r \cos \theta+\mathrm{i} r \sin \theta$
Equating real parts
$4=r \cos \theta$
(1)

Equating imaginary parts

$$
\begin{equation*}
4=r \sin \theta \tag{2}
\end{equation*}
$$

Dividing (2) by (1)

Finding the roots of a complex number is usually easier if you obtain the number in the form $r \mathrm{e}^{\mathrm{i} \theta}$. As you will use Euler's relation, the first step towards this is to get the complex number into the form $r(\cos \theta+\mathrm{i} \sin \theta)$.

$$
\tan \theta=1 \Rightarrow \theta=\frac{\pi}{4}
$$

Substituting $\theta=\frac{\pi}{4}$ into (1)
$4=r \cos \frac{\pi}{4} \Rightarrow 4=r \times \frac{1}{\sqrt{2}} \Rightarrow r=4 \sqrt{2}$
To take the fifth root, write $4 \sqrt{2}=2^{\frac{5}{2}}$.
Hence

$$
4+4 i=4 \sqrt{2}\left(\cos \frac{\pi}{4}+\mathrm{i} \sin \frac{\pi}{4}\right)
$$

$$
=2^{\frac{5}{2}} \mathrm{e}^{\frac{\pi}{4}}
$$

$$
\begin{array}{rlrl}
z^{5} & =2^{\frac{5}{2}} \mathrm{e}^{\mathrm{i} \frac{\pi}{4}}, 2^{\frac{5}{2}} \mathrm{e}^{\mathrm{i} \frac{9 \pi}{4}}, 2^{\frac{5}{2}} \mathrm{e}^{\mathrm{i} \frac{17 \pi}{4}}, 2^{\frac{5}{2}} \mathrm{e}^{\mathrm{i} \frac{25 \pi}{4}}, 2^{\frac{5}{2}} \mathrm{e}^{\mathrm{i} \frac{33 \pi}{4}} & & \text { For example, if } z^{5}=2^{\frac{5}{2}} \mathrm{e}^{\mathrm{i} \frac{9 \pi}{4}} \text { then } \\
z & =2^{\frac{1}{2}} \mathrm{e}^{\mathrm{i} \frac{\pi}{20}}, 2^{\frac{1}{2}} \mathrm{e}^{\mathrm{i} \mathrm{i} \frac{\pi}{20}}, 2^{\frac{1}{2}} \mathrm{e}^{\mathrm{i} \frac{17 \pi}{20}}, 2^{\frac{1}{2}} \mathrm{e}^{\mathrm{i} \frac{25 \pi}{20}}, 2^{\frac{1}{2}} \mathrm{e}^{\mathrm{i} \frac{33 \pi}{20}} & z=\left(2^{\frac{5}{2}} \mathrm{e}^{\mathrm{i} \frac{9 \pi}{4}}\right)^{\frac{1}{5}}=2^{\frac{5}{2} \times \frac{1}{5}} \mathrm{e}^{\mathrm{i} \frac{9 \pi}{4} \times \frac{1}{5}}=2^{\frac{1}{2}} \mathrm{e}^{\mathrm{i} \frac{9 \pi}{20}}
\end{array}
$$

This is the required form with $r=\sqrt{2}$ and

$$
k=\frac{1}{20}, \frac{9}{20}, \frac{17}{20}, \frac{25}{20}\left(=\frac{5}{4}\right), \frac{33}{20} .
$$

35 a Let $32+32 \sqrt{3} \mathrm{i}=r(\cos \theta+\mathrm{i} \sin \theta)=r \cos \theta+\mathrm{i} r \sin \theta$
Equating real parts

$$
\begin{equation*}
32=r \cos \theta \tag{1}
\end{equation*}
$$

Equating imaginary parts

$$
\begin{equation*}
32 \sqrt{3}=r \sin \theta \tag{2}
\end{equation*}
$$

Dividing (2) by (1)

$$
\tan \theta=\sqrt{3} \Rightarrow \theta=\frac{\pi}{3}
$$

Substituting $\theta=\frac{\pi}{3}$ into (1)

$$
32=r \cos \frac{\pi}{3} \Rightarrow 32=r \times \frac{1}{2} \Rightarrow r=64
$$

Hence

$$
\begin{aligned}
& 32+32 \sqrt{3} \mathrm{i}=64\left(\cos \frac{\pi}{3}+\mathrm{i} \sin \frac{\pi}{3}\right) \\
&=64 \mathrm{e}^{\mathrm{i} \frac{\pi}{3}} \\
& z^{3}=64 \mathrm{e}^{\mathrm{i} \frac{\pi}{3}}, 64 \mathrm{e}^{\mathrm{i} \frac{7 \pi}{3}}, 64 \mathrm{e}^{\mathrm{i} \frac{-5 \pi}{3}} \\
& z=4 \mathrm{e}^{\mathrm{i} \frac{\pi}{9}}, 4 \mathrm{e}^{\mathrm{i} \frac{7 \pi}{9}}, 4 \mathrm{e}^{-\mathrm{i} \frac{5 \pi}{9}}
\end{aligned}
$$

The solutions are $r \mathrm{e}^{\mathrm{i} \theta}$ where $r=4$ and

$$
\theta=-\frac{5 \pi}{9}, \frac{\pi}{9}, \frac{7 \pi}{9}
$$

b $\quad z=4 \mathrm{e}^{\mathrm{i} \frac{\pi}{9}}, 4 \mathrm{e}^{\mathrm{i} \frac{7 \pi}{9}}, 4 \mathrm{e}^{-\mathrm{i} \frac{5 \pi}{9}}$

$$
\begin{aligned}
z^{9} & =\left(4 \mathrm{e}^{\mathrm{i} \frac{\pi}{9}}\right)^{9},\left(4 \mathrm{e}^{\mathrm{i} \frac{7 \pi}{9}}\right)^{9},\left(4 \mathrm{e}^{-\mathrm{i} \frac{-5 \pi}{9}}\right)^{9} \\
& =4^{9} \mathrm{e}^{\mathrm{i} \pi}, 4^{9} \mathrm{e}^{\mathrm{i} 7 \pi}, 4^{9} \mathrm{e}^{-\mathrm{i} 5 \pi}
\end{aligned}
$$

The value of all three of these expressions is $-4^{9}=-2^{18}$
Hence the solutions satisfy $z^{9}+2^{k}=0$, where $k=18$.
$36 \quad \mathrm{i}=\cos \frac{\pi}{2}+\mathrm{i} \sin \frac{\pi}{2}=\mathrm{e}^{\mathrm{i} \frac{\pi}{2}}$
The modulus of the complex number i is 1 and its argument is $\frac{\pi}{2}$. So $i=1 e^{i \frac{\pi}{2}}$. $z^{5}=\mathrm{e}^{\mathrm{i} \frac{\pi}{2}}, \mathrm{e}^{\mathrm{i} \frac{5 \pi}{2}}, \mathrm{e}^{\mathrm{i} \frac{9 \pi}{2}}, \mathrm{e}^{\mathrm{i} \frac{13 \pi}{2}}, \mathrm{e}^{\mathrm{i} \frac{17 \pi}{2}}$, $z=\mathrm{e}^{\mathrm{i} \frac{\pi}{10}}, \mathrm{e}^{\mathrm{i} \frac{5 \pi}{10}}, \mathrm{e}^{\mathrm{i} \frac{9 \pi}{10}}, \mathrm{e}^{\mathrm{i} \frac{13 \pi}{10}}, \mathrm{e}^{\mathrm{i} \frac{17 \pi}{10}}$

Hence

$$
\begin{aligned}
& z=\cos \theta+\mathrm{i} \sin \theta, \text { where } \\
& \theta=\frac{\pi}{10}, \frac{5 \pi}{10}\left(=\frac{\pi}{2}\right), \frac{9 \pi}{10}, \frac{13 \pi}{10}, \frac{17 \pi}{10}
\end{aligned}
$$

$$
\text { For example, if } z^{5}=\mathrm{e}^{\mathrm{i} \frac{9 \pi}{2}} \text { then }
$$

$$
z=\left(\mathrm{e}^{\mathrm{i} \frac{9 \pi}{2}}\right)^{\frac{1}{5}}=\left(\mathrm{e}^{\mathrm{i} \frac{9 \pi}{10}}\right)
$$

$37 \mathbf{a} \quad z^{5}=16+16 i \sqrt{3}=32\left(\cos \left(\frac{\pi}{3}+2 k \pi\right)+i \sin \left(\frac{\pi}{3}+2 k \pi\right)\right)$
as $\sqrt{16^{2}+(16 \sqrt{3})^{2}}=32, \arctan \frac{16 \sqrt{3}}{16}=\frac{\pi}{3}$
$z=r(\cos \theta+i \sin \theta)$
$z^{5}=r^{5}(\cos 5 \theta+i \sin 5 \theta)$
$r^{5}=32, r=2$
$\theta=\frac{\pi}{15}+\frac{2 k \pi}{5}=\frac{\pi}{15}, \frac{7 \pi}{15}, \frac{13 \pi}{15},-\frac{\pi}{3},-\frac{11 \pi}{15}$
$z=2 e^{\frac{i \pi}{15}}, 2 e^{\frac{7 i \pi}{15}}, 2 e^{\frac{13 i \pi}{15}}, 2 e^{-\frac{-i \pi}{3}}, 2 e^{-\frac{11 i \pi}{15}}$
b The polygon is a regular pentagon.
38 a $|z-2+\mathrm{i}|=3$ is the circle with centre $(2,-1)$ and radius 3

b $|O C|=\sqrt{1^{2}+2^{2}}=\sqrt{5}$
Therefore,
$\operatorname{Min}|z|=3-\sqrt{5}$ and $\operatorname{Max}|z|=3+\sqrt{5}$
$39 \mathbf{a}|z-2 i|=2$ is the circle with centre $(0,2)$ and radius 2

b $|z|_{\text {max }}=4$
$40 \mathbf{a}|z-3 i|=3$ is the circle with centre $(0,3)$ and radius 3

b $\arg (z-3 \mathrm{i})=\frac{3 \pi}{4}$ is the half-line originating at $(0,3)$ at $\frac{3 \pi}{4}$ to the positive x-axis

$$
\begin{aligned}
& 2 d^{2}=9 \\
& d=\frac{3 \sqrt{2}}{2}
\end{aligned}
$$

Therefore $z=-\frac{3 \sqrt{2}}{2}+\left(3+\frac{3 \sqrt{2}}{2}\right) \mathrm{i}$
$41 \arg (z+3+\mathrm{i})=\frac{\pi}{2}$ is the half-line originating at $(-3,-1)$ at $\frac{\pi}{2}$ to the positive x-axis

Further Pure Maths 2

42 a $|z+3+\mathrm{i}|=|z-2+\mathrm{i}|$

b $|z|_{\text {min }}=\frac{1}{2}$
c $\arg z=-\frac{3 \pi}{4}$ is the half-line originating at $(0,0)$ at $-\frac{3 \pi}{4}$ to the positive x-axis $\arg z=-\frac{3 \pi}{4}$ is part of the line $y=x$
Substituting $x=-\frac{1}{2}$ into $y=x$ gives $y=-\frac{1}{2}$
Therefore $z=-\frac{1}{2}-\frac{1}{2} \mathrm{i}$

43 a The locus forms a major arc since $\theta=\frac{\pi}{4}<\frac{\pi}{2}$
b Let $z=x+\mathrm{i} y$
Then $\frac{z+\mathrm{i}}{z-\mathrm{i}}=\frac{x+\mathrm{i}(y+1)}{x+\mathrm{i}(y-1)}=\frac{(x+\mathrm{i}(y+1))(x-\mathrm{i}(y-1))}{x^{2}+(y-1)^{2}}=\frac{x^{2}+y^{2}-1+2 \mathrm{i} x}{x^{2}+(y-1)^{2}}$
$=\frac{x^{2}+y^{2}-1}{x^{2}+(y-1)^{2}}+\mathrm{i}\left(\frac{2 x}{x^{2}+(y-1)^{2}}\right)$
Now $\arg \left(\frac{z+\mathrm{i}}{z-\mathrm{i}}\right)=\frac{\pi}{4}$, so $\tan \left(\arg \left(\frac{z+\mathrm{i}}{z-\mathrm{i}}\right)\right)=\tan \frac{\pi}{4}=1$
Therefore $\frac{\frac{2 x}{x^{2}+(y-1)^{2}}}{\frac{x^{2}+y^{2}-1}{x^{2}+(y-1)^{2}}}=1$
$\frac{2 x}{x^{2}+(y-1)^{2}}=\frac{x^{2}+y^{2}-1}{x^{2}+(y-1)^{2}}$
$x^{2}+y^{2}-1=2 x$
$x^{2}-2 x+y^{2}-1=0$
$(x-1)^{2}-1+y^{2}-1=0$
$(x-1)^{2}+y^{2}=2$
Hence the centre is at $(1,0)$
44 a A is represented by the complex number $-1+3 \mathrm{i}$.
b The radius of the circle is given by $\quad|\overrightarrow{X A}|=|-1-2 \mathrm{i}-(-1+3 \mathrm{i})|=|-5 \mathrm{i}|=5$
So the area of the sector is $\quad \frac{1}{2} r^{2} \theta=\frac{25 \pi}{12}$
Substituting $r=5$ gives $\quad \frac{25 \theta}{2}=\frac{25 \pi}{12}$
Therefore $\theta=\frac{\pi}{6}$
Now $\overrightarrow{X B}=-5 \sin \frac{\pi}{6}+5 \cos \frac{\pi}{6} \mathrm{i}=-\frac{5}{2}+\frac{5 \sqrt{3}}{2} \mathrm{i}$
Therefore $b=\overrightarrow{O B}=-1-2 \mathrm{i}-\frac{5}{2}+\frac{5 \sqrt{3}}{2} \mathrm{i}$

$$
=-\frac{7}{2}+\frac{5 \sqrt{3}-4}{2} i
$$

45 Let $z=x+\mathrm{i} y$

$$
\begin{aligned}
& |z-1|=\sqrt{2}|z-\mathrm{i}| \\
& |(x-1)+\mathrm{i} y|=\sqrt{2}|x+(y-1) \mathrm{i}|
\end{aligned}
$$

Squaring the modulus gives

$$
\begin{aligned}
& |x-1+\mathrm{i} y|^{2}=2|x+(y-1) \mathrm{i}|^{2} \\
& (x-1)^{2}+y^{2}=2\left(x^{2}+(y-1)^{2}\right) \\
& x^{2}-2 x+1+y^{2}=2 x^{2}+2 y^{2}-4 y+2 \\
& x^{2}+2 x+y^{2}-4 y+1=0 \\
& (x+1)^{2}-1+(y-2)^{2}-4+1=0 \\
& (x+1)^{2}+(y-2)^{2}=4
\end{aligned}
$$

Hence the circle has radius 2 and centre $(-1,2)$

46 a

b

$\arg \left(\frac{z-2 \mathrm{i}}{z+2}\right)=\arg (z-2 \mathrm{i})-\arg (z+2)=\frac{\pi}{2}$.
The angles which the vectors make with the positive x-axis differ by a right angle. As drawn here, the difference is $\pi-\frac{\pi}{2}=\frac{\pi}{2}$. The locus of the points, where the difference is a right angle, is a semi-circle, with the line joining -2 on the real axis to 2 on the imaginary axis as diameter.
It is a common error to complete the circle. The lower right hand completion of the circle has equation $\arg \left(\frac{z-2 \mathrm{i}}{z+2}\right)=-\frac{\pi}{2}$.

The dotted line represents the complex number $z+1-\mathrm{i}=z-(-1+\mathrm{i})$. The length of this vector is the radius of the circle.

The diameter of the circle is given by $d^{2}=2^{2}+2^{2}=8$, so $d=2 \sqrt{2}$
Therefore $|z+1-\mathrm{i}|=\frac{2 \sqrt{2}}{2}=\sqrt{2}$
47 a Both loci L and M are circles, hence they are similar.

Further Pure Maths 2

47 b Computing the scale factor of enlargement amounts to computing the radii of both circles.
For L we have:

$$
\begin{aligned}
& |z-4|=\sqrt{5}|z+2 \mathrm{i}| \\
& |(x-4)+\mathrm{i} y|=\sqrt{5}|x+(y+2) \mathrm{i}| \\
& |(x-4)+\mathrm{i} y|^{2}=5|x+(y+2) \mathrm{i}|^{2} \\
& (x-4)^{2}+y^{2}=5\left(x^{2}+(y+2)^{2}\right) \\
& x^{2}-8 x+16+y^{2}=5 x^{2}+5 y^{2}+20 y+20 \\
& 4 x^{2}+8 x+4 y^{2}+20 y+4=0 \\
& x^{2}+2 x+y^{2}+5 y+1=0 \\
& (x+1)^{2}-1+\left(y+\frac{5}{2}\right)^{2}-\frac{25}{4}+1=0
\end{aligned}
$$

Which simplifies to

$$
(x+1)^{2}+\left(y+\frac{5}{2}\right)^{2}=\frac{25}{4}
$$

Hence the radius of L is $\frac{5}{2}$
For M we have:

$$
\begin{aligned}
& |z-6|=\sqrt{7}|z+6 i| \\
& |(x-6)+\mathrm{i} y|=\sqrt{7}|x+\mathrm{i}(y+6)| \\
& |(x-6)+\mathrm{i} y|^{2}=7|x+(y+6) \mathrm{i}|^{2} \\
& (x-6)^{2}+y^{2}=7 x^{2}+7(y+6)^{2} \\
& x^{2}-12 x+36+y^{2}=7 x^{2}+7 y^{2}+84 y+252 \\
& 6 x^{2}+12 x+6 y^{2}+84 y+216=0 \\
& x^{2}+2 x+y^{2}+14 y+36=0 \\
& (x+1)^{2}-1+(y+7)^{2}-49+36=0 \\
& (x+1)^{2}+(y+7)^{2}=14
\end{aligned}
$$

Hence this circle has radius $\sqrt{14}$
So the scale factor of enlargement is $\frac{\sqrt{14}}{\frac{5}{2}}=\frac{2 \sqrt{14}}{5}$

Further Pure Maths 2

48 The locus is given by
$\arg \left(\frac{z+1}{z}\right)=\frac{\pi}{4}$
Substituting $z=x+\mathrm{i} y$
$\frac{z+1}{z}=\frac{x+1+\mathrm{i} y}{x+\mathrm{i} y}=\frac{(x+1+\mathrm{i} y)(x-\mathrm{i} y)}{(x+\mathrm{i} y)(x-\mathrm{i} y)}=\frac{x^{2}+x+\mathrm{i} x y-\mathrm{i} x y-\mathrm{i} y+y^{2}}{x^{2}+y^{2}}$
$=\frac{x^{2}+x+y^{2}-\mathrm{i} y}{x^{2}+y^{2}}=\frac{x^{2}+x+y^{2}}{x^{2}+y^{2}}+\frac{-y}{x^{2}+y^{2}} \mathrm{i}$
Now $\arg \left(\frac{z+1}{z}\right)=\frac{\pi}{4}$, so $\tan \left(\arg \left(\frac{z+1}{z}\right)\right)=\tan \frac{\pi}{4}=1$
So $\frac{\frac{-y}{x^{2}+y^{2}}}{\frac{x^{2}+x+y^{2}}{x^{2}+y^{2}}}=1$
$-y=x^{2}+x+y^{2}$
$x^{2}+x+y^{2}+y=0$
$\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}+\left(y+\frac{1}{2}\right)^{2}-\frac{1}{4}=0$
$\left(x+\frac{1}{2}\right)^{2}+\left(y+\frac{1}{2}\right)^{2}=\frac{1}{2}$
So the centre of the circle is $\left(-\frac{1}{2},-\frac{1}{2}\right)$ and the radius is $\frac{1}{\sqrt{2}}$
Therefore, this is the major arc of a circle.
The length of the curve required is $r(2 \pi-\theta)$, where θ is the angle between the lines connecting the endpoints of the arc to the centre of the circle.
Geometrically we can see that $\tan \frac{\theta}{2}=\frac{\frac{1}{2}}{\frac{1}{2}}=1$, so $\theta=\frac{\pi}{2}$
Therefore the length of the arc is $\frac{1}{\sqrt{2}}\left(2 \pi-\frac{\pi}{2}\right)=\frac{1}{\sqrt{2}}\left(\frac{3 \pi}{2}\right)=\frac{3 \pi}{2 \sqrt{2}}$

49 We consider the locus $|z-\mathrm{i}|=\sqrt{p}|z+1|$
Squaring gives $|z-\mathrm{i}|^{2}=p|z+1|^{2}$
Substituting $z=x+\mathrm{i} y$:
$|x+(y-1) \mathrm{i}|^{2}=p|(x+1)+\mathrm{i} y|^{2}$
$x^{2}+(y-1)^{2}=p\left((x+1)^{2}+y^{2}\right)$
$x^{2}+y^{2}-2 y+1=p x^{2}+2 p x+p+p y^{2}$
$(p-1) x^{2}+2 p x+2 y+(p-1) y^{2}+p-1=0$
$x^{2}+\frac{2 p x}{p-1}+y^{2}+\frac{2 y}{p-1}+1=0$
$\left(x+\frac{p}{p-1}\right)^{2}-\frac{p^{2}}{(p-1)^{2}}+\left(y+\frac{1}{p-1}\right)^{2}-\frac{1}{(p-1)^{2}}+1=0$
$\left(x+\frac{p}{p-1}\right)^{2}+\left(y+\frac{1}{p-1}\right)^{2}=\frac{p^{2}}{(p-1)^{2}}+\frac{1}{(p-1)^{2}}-1$
$\left(x+\frac{p}{p-1}\right)^{2}+\left(y+\frac{1}{p-1}\right)^{2}=\frac{p^{2}+1-(p-1)^{2}}{(p-1)^{2}}$
$\left(x+\frac{p}{p-1}\right)^{2}+\left(y+\frac{1}{p-1}\right)^{2}=\frac{2 p}{(p-1)^{2}}$
Hence the radius is $\frac{\sqrt{2 p}}{p-1}$
For a circumference of 24π the radius is 12
Hence $\frac{\sqrt{2 p}}{p-1}=12$
$2 p=(12 p-12)^{2}$
$50 \frac{\pi}{4} \leq \arg (z-1) \leq \frac{2 \pi}{3}$

$51\left\{z \in \mathbb{C}:-\frac{\pi}{2}<\arg (z-3-3 \mathrm{i}) \leq \frac{3 \pi}{4}\right\} \cap\{z \in \mathbb{C}:|z-3 \mathrm{i}| \leq 3\}$

52

53 a The locus is given by the inequalities $|z-6 \mathrm{i}| \leqslant 2|z-3|$ and $\operatorname{Re}(z) \leqslant k$
Taking the first inequality:
$|z-6 \mathrm{i}|^{2} \leqslant 4|z-3|^{2}$
$|x+(y-6) \mathrm{i}|^{2} \leqslant 4|x-3+\mathrm{i} y|^{2}$
$x^{2}+(y-6)^{2} \leqslant 4\left((x-3)^{2}+y^{2}\right)$
$x^{2}+y^{2}-12 y+36 \leqslant 4 x^{2}-24 x+36+4 y^{2}$
$0 \leqslant 3 x^{2}-24 x+3 y^{2}+12 y$
$0 \leqslant x^{2}-8 x+y^{2}+4 y$
$x^{2}-8 x+y^{2}+4 y \geqslant 0$
$(x-4)^{2}-16+(y+2)^{2}-4 \geqslant 0$
$(x-4)^{2}+(y+2)^{2} \geqslant 20$
Hence the circle has centre ($4,-2$)
Hence, for a semi-circle, we should take $k=4$
b The area of the semicircle is $\frac{\pi r^{2}}{2}=\frac{\pi \times 20}{2}=10 \pi$

INTERNATIONAL A LEVEL

54 The line corresponding to $|z-p|=|z-q|$ is given by the perpendicular bisector of p and q, that is $x=\frac{p+q}{2}$
The area of the triangular region is therefore $\frac{1}{2} \times\left(\frac{q-p}{2}\right)^{2}=x$
So $(q-p)^{2}=8 x$
$q-p=\sqrt{8 x}$
So $q=p+\sqrt{8 x}$, as required
55 a The transformation defined by $w=3 z+4-2$ i represents a scaling by 3 , followed by a translation by the complex number $4-2 \mathrm{i}$.
The translation leaves the area of the triangle invariant.
Therefore the new area is $3^{2} \times 8=72$.

55b We consider what happens to the $\operatorname{line} \operatorname{Im}(z)=4$ under the transformation.
Consider a point $z=x+4 \mathrm{i}$ on the line.
This is mapped to $w=3(x+4 \mathrm{i})+4-2 \mathrm{i}=3 x+4+10 \mathrm{i}$.
Hence the line is mapped to the line $\operatorname{Im}(z)=10$.
$56 w=\frac{2 z-1}{z-2} \Rightarrow w z-2 w=2 z-1$
$w z-2 z=2 w-1 \Rightarrow z(w-2)=2 w-1$
$z=\frac{2 w-1}{w-2}$
$|z|=1 \Rightarrow\left|\frac{2 w+1}{w-2}\right|=1$
$|2 w-1|=|w-2|$
Let $w=u+\mathrm{i} v$

$$
\begin{aligned}
|2(u+\mathrm{i} v)-1| & =|u+\mathrm{i} v-2| \\
|(2 u-1)+\mathrm{i} 2 v| & =|(u-2)+\mathrm{i} v| \\
|(2 u-1)+\mathrm{i} 2 v|^{2} & =|(u-2)+\mathrm{i} v|^{2} \\
(2 u-1)^{2}+4 v^{2} & =(u-2)^{2}+v^{2} \\
4 u^{2}-4 u+1+4 v^{2} & =u^{2}-4 u+4+v^{2} \\
3 u^{2}+3 v^{2} & =3 \Rightarrow u^{2}+v^{2}=1
\end{aligned}
$$

You know that $|z|=1$ and you are trying to find out about w. So it is a good idea to change the subject of the formula to z. You can then put the modulus of the right hand side of the new formula, which contains w, equal to 1 .

It is not easy to interpret this locus geometrically and so it is sensible to transform the problem into algebra, using the rule that if $z=x+\mathrm{i} y$, then $|z|^{2}=x^{2}+y^{2}$.

This is a circle centre O, radius 1 and has the equation $|w|=1$ in the Argand plane.

Hence, the circle $|z|=1$ is mapped onto the circle $|w|=1$, as required.

INTERNATIONAL A LEVEL

$57 \mathbf{a} \quad z=x+\frac{1}{2} \mathrm{i}$

$$
\begin{aligned}
z w & =z-\mathrm{i} \Rightarrow z-w z=\mathrm{i} \\
z & =\frac{\mathrm{i}}{1-w}
\end{aligned}
$$

Let $w=u+\mathrm{i} v$

$$
x+\frac{1}{2} \mathrm{i}=\frac{\mathrm{i}}{1-u-\mathrm{i} v}
$$

Multiplying the numerator and denominator

$$
\begin{aligned}
& \text { by } 1-u+\mathrm{i} v \\
& \qquad \begin{aligned}
x+\frac{1}{2} \mathrm{i} & =\frac{\mathrm{i}(1-u+\mathrm{i} v)}{(1-u)^{2}+v^{2}}, \\
& =\frac{-v}{(1-u)^{2}+v^{2}}+\frac{1-u}{(1-u)^{2}+v^{2}} \mathrm{i}
\end{aligned}
\end{aligned}
$$

Multiply the numerator and the denominator of the right hand side by the conjugate complex of $1-u-\mathrm{i} v$ which is $1-u+\mathrm{i} v$.

Equating imaginary parts

$$
\begin{aligned}
\frac{1}{2} & =\frac{1-u}{u^{2}-2 u+1+v^{2}} \\
u^{2}-2 u+1+v^{2} & =2-2 u \\
u^{2}+v^{2} & =1
\end{aligned}
$$

You are aiming at $|w|=1$. If $w=u+\mathrm{i} v$, this is the equivalent to $u^{2}+v^{2}=1$. So that is the expression you are looking for.
$u^{2}+v^{2}=1$ is a circle centre O, radius 1 .
Hence the line, $\operatorname{Im} z=\frac{1}{2}$ is mapped onto the circle with equation $|w|=1$.
b The transformation $w^{\prime}=\frac{z-\mathrm{i}}{z}$ maps the line $\operatorname{Im} z=\frac{1}{2}$ onto the circle with centre O and radius 1 .

The transformation $w^{\prime \prime}=2 w^{\prime}$ maps the circle with centre O and radius 1 onto the circle with centre O and radius 2 .

The transformation $w=w^{\prime \prime}+3$-i maps the circle with centre O and radius 2 onto the circle with centre $3-\mathrm{i}$ and radius 2 .

The first transformation is the transformation in part a.
 Combining the transformations

$$
\begin{aligned}
w & =2\left(\frac{z-\mathrm{i}}{z}\right)+3-\mathrm{i} \\
& =\frac{2 z-2 \mathrm{i}+3 z-\mathrm{i} z}{z} \\
& =\frac{(5-\mathrm{i}) z-2 \mathrm{i}}{z}
\end{aligned}
$$

The transformation $z \mapsto k z$ increases the radius of the circle by a factor of k. This transformation is an enlargement, factor k, centre of enlargement O.

The transformation $z \mapsto z+a$ maps a circle centre O to a circle centre a. This transformation is a translation.

INTERNATIONAL A LEVEL

58 a If $z=x+\mathrm{i} y$, then $\arg z=\frac{\pi}{4} \Rightarrow \frac{y}{x}=1$
Let $x=y=\lambda$

$$
\begin{aligned}
w & =\frac{\lambda+\lambda \mathrm{i}+1}{\lambda+\lambda \mathrm{i}+\mathrm{i}}=\frac{(\lambda+1)+\lambda \mathrm{i}}{\lambda+(\lambda+1) \mathrm{i}} \\
|w| & =\left|\frac{(\lambda+1)+\lambda \mathrm{i}}{\lambda+(\lambda+1) \mathrm{i}}\right|=\frac{|(\lambda+1)+\lambda \mathrm{i}|}{|\lambda+(\lambda+1) \mathrm{i}|} \\
& =\frac{\left((\lambda+1)^{2}+\lambda^{2}\right)^{\frac{1}{2}}}{\left(\lambda^{2}+(\lambda+1)^{2}\right)^{\frac{1}{2}}}=1
\end{aligned}
$$

Hence the points on $\arg z=\frac{\pi}{4}$ map, under T,
onto points on the circle $|w|=1$.

As $\lambda>0$, the image would only be part of this circle but the wording of the question does not require you to be more specific. You are only required to show that the image points are points on the circle; not all of the points on the circle. (The image is, in fact, just the lower right quadrant of the circle.)
b $w z+w i=z+1$

$$
\begin{aligned}
w z-z & =1-\mathrm{i} w \\
z & =\frac{1-\mathrm{i} w}{w-1} \\
|z| & =\frac{|1-\mathrm{i} w|}{|w-1|}=1
\end{aligned}
$$

This is the image under T of $|z|=1$ but it is difficult to interpret and part \mathbf{c} would be difficult without some further working.

Hence $|1-\mathrm{i} w|=|w-1|$

$$
|1-\mathrm{i} w|=|-\mathrm{i}(w+1)|=|-\mathrm{i}||w+\mathrm{i}|=1 \times|w+\mathrm{i}|=|w+\mathrm{i}|
$$

The image of $|z|=1$ in the z-plane is

$$
|w+\mathrm{i}|=|w-1|
$$

in the w-plane.

This is the locus of points equidistant from the points in the Argand plane representing $-i$ and one. That is the perpendicular bisector of $(0,-1)$ and $(1,0)$.

Writing $w=u+\mathrm{i} v$:

$$
\begin{aligned}
& |u+\mathrm{i} v+\mathrm{i}|=|u+\mathrm{i} v-1| \\
& |u+(v+1) \mathrm{i}|=|(u-1)+\mathrm{i} v| \\
& |u+(v+1) \mathrm{i}|^{2}=|(u-1)+\mathrm{i} v|^{2} \\
& u^{2}+(v+1)^{2}=(u-1)^{2}+v^{2} \\
& u^{2}+v^{2}+2 v+1=u^{2}-2 u+1+v^{2}
\end{aligned}
$$

So $v=-u$
$58 \mathrm{c}, \mathrm{d}$

 $z=\mathrm{i} \Rightarrow w=\frac{1+\mathrm{i}}{2 \mathrm{i}}=\frac{\mathrm{i}+1}{2 \mathrm{i}}=\frac{1}{2}-\frac{1}{2} \mathrm{i}$

The perpendicular bisector of $(0,-1)$ and $(1,0)$ is the line $v=-u$.

59 a $z=a^{-1} \mathrm{e}^{\mathrm{i} \theta}$
b Let $z=a^{-1} \mathrm{e}^{\mathrm{i} \theta}$ then we have $w=a z+\frac{1}{z}=\mathrm{e}^{\mathrm{i} \theta}+a \mathrm{e}^{-\mathrm{i} \theta}$

$$
\begin{aligned}
& =\cos \theta+\mathrm{i} \sin \theta+a(\cos \theta-\mathrm{i} \sin \theta) \\
& =(1+a) \cos \theta+(1-a) \mathrm{i} \sin \theta \\
& =u+\mathrm{i} v
\end{aligned}
$$

Hence $u=(1+a) \cos \theta$ and $v=(1-a) \sin \theta$
$\left(\frac{u}{1+a}\right)^{2}+\left(\frac{v}{1-a}\right)^{2}=1$
$u^{2}(1-a)^{2}+v^{2}(1+a)^{2}=(1+a)^{2}(1-a)^{2}$
$u^{2}(1-a)^{2}+v^{2}(1+a)^{2}=[(1+a)(1-a)]^{2}$
$u^{2}(1-a)^{2}+v^{2}(1+a)^{2}=\left(1-a^{2}\right)^{2}$
as required
c This ellipse corresponds to the case $a=3$, hence the points on the z-plane that are transformed to the ellipse are those such that $|z|=\frac{1}{3}$

Further Pure Maths 2

Challenge

$1 \frac{1}{1-\sin x}<\frac{1}{\sin x}$ for $0<x<2 \pi$

Equating $y=\frac{1}{1-\sin x}$ and $y=\frac{1}{\sin x}$ gives:
$\sin x=1-\sin x$
$2 \sin x=1$
$\sin x=\frac{1}{2}$
In the range $0<x<2 \pi$
$\sin x=\frac{1}{2}$ at $\frac{\pi}{6}$ and $\frac{5 \pi}{6}$
Therefore:
$0<x<\frac{\pi}{6}$ and $\frac{5 \pi}{6}<x<\pi$
2 a $\omega=\mathrm{e}^{\frac{2 \pi i}{3 i}}, \omega^{3 k}=\mathrm{e}^{2 \pi i k}=1$

$$
\left.\begin{array}{l}
n=0: \frac{1^{n}+\omega^{n}+\left(\omega^{2}\right)^{n}}{3}=\frac{1+1+1}{3}=1 \\
n=3 k: \frac{1^{3 k}+\omega^{3 k}+\left(\omega^{2}\right)^{3 k}}{3}
\end{array}=\frac{1^{3 k}+\omega^{3 k}+\left(\omega^{3 k}\right)^{2}}{3}\right) ~ \begin{aligned}
& n=3 k+1: \frac{1+1+1}{3}=1 \\
&=\frac{1^{3 k+1}+\omega^{3 k+1}+\left(\omega^{2}\right)^{3 k+1}}{3} \\
&=\frac{1+\omega^{3 k+1}+\omega^{6 k+2}}{3} \\
&=\frac{1+\omega^{3 k} \omega+\left(\omega^{3 k}\right)^{2} \omega^{2}}{3}=\frac{1+\omega+\omega^{2}}{3}=0
\end{aligned}
$$

$$
\begin{aligned}
n=3 k+2: \frac{1^{3 k+1}+\omega^{3 k+2}+\left(\omega^{2}\right)^{3 k+2}}{3} & =\frac{1+\omega^{3 k+2}+\omega^{6 k+4}}{3} \\
& =\frac{1+\omega^{3 k} \omega^{2}+\left(\omega^{3 k}\right)^{2} \omega^{3} \omega}{3}=\frac{1+\omega^{2}+\omega}{3}=0
\end{aligned}
$$

b $\mathrm{f}(x)=\sum a_{n} x^{n}$

$$
\begin{aligned}
& \mathrm{f}(1)=\sum a_{n}, \mathrm{f}(\omega)=\sum a_{n} \omega^{n}, \mathrm{f}\left(\omega^{2}\right)=\sum a_{n}\left(\omega^{2}\right)^{n} \\
& \begin{aligned}
\frac{\mathrm{f}(1)+\mathrm{f}(\omega)+\mathrm{f}\left(\omega^{2}\right)}{3} & =\sum a_{n} \frac{1^{n}+\omega^{n}+\left(\omega^{2}\right)^{n}}{3} \\
& =\sum a_{n} 1_{\{n=3 k\}},
\end{aligned}
\end{aligned}
$$

where $1_{\{n=3 k\}}=1$ if $n=3 k$ and 0 otherwise
c $\mathrm{f}(x)=(1+x)^{45}=\sum_{r=0}^{45}\binom{45}{r} x^{r}$

$$
\begin{aligned}
S & =\sum_{r=0}^{45}\binom{45}{r} 1_{\{r=3 k\}}=\sum_{r=0}^{15}\binom{45}{3 r} \\
& =\frac{\mathrm{f}(1)+\mathrm{f}(\omega)+\mathrm{f}\left(\omega^{2}\right)}{3}=\frac{2^{45}+(1+\omega)^{45}+\left(1+\omega^{2}\right)^{45}}{3} \\
& =\frac{2^{45}+\left(-\omega^{2}\right)^{45}+(-\omega)^{45}}{3}=\frac{2^{45}-\left(\omega^{3}\right)^{30}-\left(\omega^{3}\right)^{15}}{3} \\
& =\frac{2^{45}-2}{3} \text { as } 1+\omega+\omega^{2}=0 \text { and } \omega^{3}=0
\end{aligned}
$$

